skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Perry, Chris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Marine fish precipitate carbonates in their intestines that they subsequently excrete as part of an osmoregulatory strategy. While fish carbonates are proposed to be volumetrically significant to the global carbonate budget, no study has presented direct evidence of fish carbonates in the open ocean. Here we examine sediment trap material collected by the Oceanic Flux Program (OFP) in the North Atlantic and observe the episodic occurrence of enigmatic blue particles since 1992. The blue particles are comprised of calcite with unusually high magnesium content (up to 46 mol%) with distinctively depleted δ13C and enriched δ18O compared with calcite produced by common marine calcifiers. Based on the mineralogical, isotopic, and textural similarities between the blue particles and fish carbonates, we propose that the blue particles are produced by pelagic fish. Our data suggest that fish modify their intestinal fluids to create a concentrated, highly supersaturated,13C depleted solution capable of precipitating calcite with high magnesium content and low δ13C. Collectively, our data imply that fish carbonate production is an open‐ocean phenomenon, opening up the possibility that fish contribute to the production, dissolution, and export of carbonates globally. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract Sustainable agricultural water systems are critical to ensure prosperous agricultural production, secure water resources, and support healthy ecosystems that sustain livelihoods and well-being. Many growing regions are using water unsustainably, leading to groundwater and streamflow depletion and polluted water bodies. Often, this is driven by global consumer demands, with environmental and social impacts occurring in regions far from where the crop is ultimately consumed. This letter defines sustainable agricultural water limits, both for quantity and quality, tying them to the impacts of agricultural water use, such as impacts on ecosystems, economies, human health, and other farmers. Imposing these limits will have a range of both positive and negative impacts on agricultural production, food prices, ecosystems, and health. Pathways forward exist and are proposed based on existing studies, showing the gains that can be made from the farm to global scale to ensure sustainable water systems while sustaining agricultural production. 
    more » « less
  3. Abstract Several coastal ecosystems—most notably mangroves and tidal marshes—exhibit biogenic feedbacks that are facilitating adjustment to relative sea-level rise (RSLR), including the sequestration of carbon and the trapping of mineral sediment 1 . The stability of reef-top habitats under RSLR is similarly linked to reef-derived sediment accumulation and the vertical accretion of protective coral reefs 2 . The persistence of these ecosystems under high rates of RSLR is contested 3 . Here we show that the probability of vertical adjustment to RSLR inferred from palaeo-stratigraphic observations aligns with contemporary in situ survey measurements. A deficit between tidal marsh and mangrove adjustment and RSLR is likely at 4 mm yr −1 and highly likely at 7 mm yr −1 of RSLR. As rates of RSLR exceed 7 mm yr −1 , the probability that reef islands destabilize through increased shoreline erosion and wave over-topping increases. Increased global warming from 1.5 °C to 2.0 °C would double the area of mapped tidal marsh exposed to 4 mm yr −1 of RSLR by between 2080 and 2100. With 3 °C of warming, nearly all the world’s mangrove forests and coral reef islands and almost 40% of mapped tidal marshes are estimated to be exposed to RSLR of at least 7 mm yr −1 . Meeting the Paris agreement targets would minimize disruption to coastal ecosystems. 
    more » « less